
Trace Cards

1 of 16

Trace Cards Nik Boyd
educery

Abstract

A new technique for capturing requirements information on index cards is introduced, including policy
cards, intelligence quality and quantity cards, and face cards. The origins, purpose and usage of each
card type are discussed, and a few representative examples are provided. Some considerations
regarding how trace cards may be used in conjunction with CRC cards are also offered.

Introduction

Software developers need simple ways to capture and share knowledge. Large (4" x 6") index cards
provide a convenient form factor for capturing and sharing knowledge. Index cards are convenient
from several standpoints:

They are (literally) handy.
They are easy to use and share.
They encourage brevity and simplicity (focus).
They are cheap, portable, readily available, and familiar.

For these reasons, index cards can facilitate some of the most difficult aspects of software
development, including not only solution design, but also problem definition. Just so, trace cards are
primarily problem oriented. Trace cards offer a convenient and efficient way to capture and share
knowledge about business policies, business intelligence needs, and business activities. They offer a
way to keep object-oriented software designs aligned with business policies and priorities.

Precedent and Context

During the late 1980s, Ward Cunningham and Kent Beck introduced the use of CRC (Class,
Responsibility, Collaborator) cards1 as a technique for capturing and sharing object-oriented design
decisions. Since then, the technique has become popular among object-oriented software developers,
largely due to its simplicity and effectiveness. Just as developers need a convenient way to capture and
share design decisions, requirements analysts need simple ways to capture and share knowledge about
business policies, business intelligence, and business activities during software development.

Language dominates software development, especially during the earliest phases of a project when the
vast majority of time is spent discussing business objectives and the intended effects for a project.
Ultimately, all software elements, components and composites are named, and they are often organized
based on linguistic affinities, e.g., as objects and sentential expressions in object-oriented designs. So,
the words used in discussions about business problems and solutions will naturally have a dramatic and
durable impact on the resulting software. Beck and Cunningham emphasized this point with respect to
CRC cards:

"The class name of an object creates a vocabulary for discussing a design. Indeed, many
people have remarked that object design has more in common with language design than
with procedural program design. We urge learners (and spend considerable time ourselves

Trace Cards

2 of 16

while designing) to find just the right set of words to describe our objects, a set that is
internally consistent and evocative in the context of the larger design environment."

"Responsibilities identify problems to be solved. The solutions will exist in many versions
and refinements. A responsibility serves as a handle for discussing potential solutions. The
responsibilities of an object are expressed by a handful of short verb phrases, each
containing an active verb. The more that can be expressed by these phrases, the more
powerful and concise the design. Again, searching for just the right words is a valuable use
of time while designing."

Perhaps even more so, discovering just the right words is valuable when capturing discussions about
business policies, business intelligence, and business activities. This knowledge is the requisite fodder
consumed during requirements analysis and solution design, and it establishes the context within which
software solutions will be developed and evolved.

Diagrams vs. Narratives

How should knowledge about business problems be captured? What kind of residue should remain and
be maintained after solution development? These questions often arise during software development
projects. Most modern human interfaces are graphical, and so require graphical designs. Also, since the
early 1980s, graphical notations have become a popular way to visualize other aspects of software.

Some methodologists have offered elaborate graphical notations for capturing knowledge about
business elements and activities, e.g., the UML.2 Such diagrams provide useful overviews and help us
visualize the structural relationships between software elements, components, and composites.
However, as design artifacts and residues, diagrams are expensive to create and maintain and usually
require special tools. Also, they are prone to complexity and (intentionally) limited in their
expressiveness.

Because of their rich structure and interconnections, most goals and usage scenarios are best expressed
as structured narratives. Narratives are easy to create and maintain and usually require only simple
tools. Also, narratives are easier to simplify and provide the full expressiveness of natural language.
Given that modern software extensively leverages language metaphors, structured narratives offer a
better fit for maintaining the traceability and the expressive proximity of the resultant software to its
originating requirements.

Planning and Tracking Success

Success is rarely accidental. It must usually be planned. This is especially true for software
development. Software is a conceptual artifact. Software developers need conceptual leverage,
techniques that make tackling the inherent complexity of software solution design tractable. First and
foremost, software developers need to ensure that their work products align with the policies and
improve the activities of a business.

Software solutions support and improve business activities. Business activities are directed by business
policies. Business intelligence provides the management community with data critical to the guidance
of business activities and the maintenance of their alignment with business policies.

Trace Cards

3 of 16

Trace cards extend conceptual thinking beyond objects into their business origins. They provide ways
to capture and share knowledge about business policies (vision and mission), business intelligence
(qualities and quantities), and business activities (workflows and solution usage). They also help
establish and maintain alignment and traceability across requirements levels.

Solution designs are usually impacted by various forces and constraints outside of the control of a
solution designer. Engineers evaluate and attempt to balance the known forces based on their known
or discovered effects. To properly evaluate and balance a set of forces, an engineer needs to know not
only what these forces are, but also how they relate to each other. Software designers need to know
not only what to accomplish and how, but also why. Trace cards provide answers to some of these
questions.

Goal Levels

Explicitly identifying the nature and level of goals can help us to align technology development with
business objectives. In Writing Effective Use Cases,3 Alistair Cockburn identifies several goal levels
used for requirements. However, there are certain kinds of business policies that were not included.
The following proposed goal levels extend those he offered and continues the metaphor of verticality
he used.

Table 1. Goal Levels

Level Nature Source Icon

Vision Policy Governor

Mission Critical Policy Governor

Mission Central Policy Governor

Mission Peripheral Policy Governor

Organization External
Customer,
Partner, Supplier

Organization Internal Requestor

System External Expector

System Internal Interface
Designer

Component External Component
Designer

Trace Cards

4 of 16

Policy Cards

Business policies establish the ends, means, and central values of a business. These policies traditionally
appear in business vision, mission, and value statements. These core business documents originate in
the corporate governance community, especially the board of directors, the corporate officers, and the
management team.

Policy cards generally derive their focus from business governance policy statements: vision, mission,
values. Policy cards provide a way to capture and organize selected business policies on index cards.
They can be used:

to align software solution requirements with business policies,
to trace software solution purposes back to business policies,
as touchstones for prioritizing software solution features,
throughout the various requirements levels.

A policy card should always capture the following information:

A quality instantiation is a simple noun phrase composed of two parts:
a descriptive adjective derived from the quality / value theme, and1.
a common noun phrase that identifies a subject of concern under the identified theme.2.

A benefit description describes the benefit(s) conferred by the instantiation.

A policy card may also exhibit one of two organizational variations: organized by theme and organized
by subject. Card templates (1 and 2) for these two variations can be found in Appendix A.

When policy concerns are organized by theme (see Card Template 1),

A quality / value theme abstracts a thematic concern from a vision, mission, or value statement.
A basic measure characterizes the primary unit(s) of measure used to quantify the theme.
The quality instantiations all share the same theme, but may have different subjects of concern.

When policy concerns are organized by subject (see Card Template 2),

A concern subject type identifies a kind of subject: a process, a service, a product, or a policy.
A specific concern subject identifies a specific subject of concern within the broader class.
The qualify instantiations all share the same subject of concern, but may have different quality
themes.

Policy cards can be used to capture ends statements, especially from vision and mission statements.
However, ends statements differ from means statements in a subtle but significant way. Ends
statements focus on effects rather than efforts. For some further remarks about ends statements and
their formulation, see Quality Alignment and Quality Inventories.4

Trace Cards

5 of 16

Here's a sample of how an overall corporate vision statement might be captured for Geekcorps
(www.geekcorps.org).

Card 1. Geekcorps Vision

professionalism engagement count
professional software practices shared by qualified volunteer software professionals, and
 adopted by emergent organizations
 throughout the world, resulting in

better software solutions for emergent organizations worldwide

Software solutions often have several associated service quality concerns, both on their surfaces and
within their internals. While the surface qualities will impact users, IT (ops) will likely care about all of
these qualities. For example, an online accident claim filing service might have the following external
and internal quality concerns:

Card 2. Claim Submission Service Qualities

service accident claim submission
affordable service minimizes usage costs (user friendly)
available service maximizes opportunities for use (locations v. time)
quick service minimizes time to obtain result(s)
robust service handles exceptions gracefully (failure dialogs)
secure service prevents unauthorized usage (user authentication)
trustable service protects information privacy + integrity (SSL)
verifiable service provides evidence of commission (claim number, records, logs)

reliable service assures proper function
measurable service exposes relevant internal states and metrics
scalable service handles increased usage gracefully

Trace Cards

6 of 16

Intelligence Cards

Business intelligence offers management the information needed to guide the business in the directions
established by business policies. Business intelligence regards the various business quality concerns,
especially the (quantitative) measurement of the relevant business products and activities.

Intelligence cards are generally paired: a quality card with a quantity card. A quality card collects
knowledge about a single business quality concern, while the corresponding quantity card collects
details about the measurements related to that quality concern. Together, they can be used:

to capture the results of the goal, question, metric (GQM) approach,5, 6

to align and trace business instrumentation requirements to business policies,
throughout the various requirements levels.

Templates (3 and 4) for these two cards can be found in Appendix A. To link the quality and quantity
cards, they both share the following information:

A quality concern identifies a general quality area or issue of interest to a kind of stakeholder.
A quality concern subject identifies a concern subject that needs assessment or improvement.
An essential metric is used to measure (quantify) the quality of the concern subject.
A stakeholder role identifies a kind of stakeholder concern about the focus quality.

A quality card (see Card Template 3) captures the following additional information:

A stakeholder objective indicates the intended quality objective of the identified stakeholder.
A stakeholder goal / target indicates a specific target and/or goal of the identified stakeholder.
Each listed question helps characterize the concern subject from some stakeholder viewpoint(s).
Each listed metric identifies the kind of measurement(s) needed to answer a listed question.

A quantity card (see Card Template 4) captures the following additional information:

Each listed measurement identifies a characteristic needed to answer a concern question.
Each listed quality condition identifies a relevant relation between measurements.
Each listed source / instrument indicates the origin of a listed measurement or derivation of a
listed condition.

Trace Cards

7 of 16

Here's an example taken from the GQM literature.5 We can detail the qualities and quantities needed to
characterize and measure change request processing speed from the perspective of a project manager.

Card 3. CR Processing Speed Questions

speed cycle time
change request (CR) processing project manager
minimize CR processing cycle time 10% faster by Q4

what is the current CR processing speed? average cycle time
 standard deviation (from average)
what is the acceptable maximum cycle time? acceptable limit
 excessive cases (over limit)
 percentage of excessive cases
is CR processing performance improving? baseline, current average cycle time
 (current / baseline) * 100
 subjective satisfaction rating
is the CR process actually performed? percentage of exceptions (review discoveries)
 subjective evaluation

Card 4. CR Processing Speed Measures and Conditions

speed cycle time
change request processing project manager

excessive case percentage = (excessive cases / total cases) * 100
excessive case = (request cycle time > acceptable limit)
acceptable cycle time limit from: project manager
speedup percentage = (current average / baseline average) * 100
average cycle time = sum(case cycle time) / total cases
request cycle time = (completion timestamp - initiation timestamp)
request completion timestamp from: change request management system
request initiation timestamp from: change request management system
process conformance evaluation from: project manager (subjective)
performance satisfaction rating from: project manager (subjective)
process exception percentage = (project exceptions / total cases) * 100
process exception from: project review (SEPG)

Trace Cards

8 of 16

The following sample user story was taken from Extreme Programming Installed7 (pg. 27).

"When the GPS has contact with two or fewer satellites for more than 60 seconds, it
should display the message "Poor satellite contact," and wait for confirmation from the
user. If contact improves before confirmation, clear the message automatically."

Card 5. GPS Position Sense Stability Questions

stability satellite signal strength
GPS receiver position sense GPS user
maintain stable position sense outages > 60 seconds acknowledged

how strong is each satellite signal? satellite signal strength (dB/mW)
 stable satellite signal duration (seconds)
how many satellite contacts are stable? stable satellite signal duration >
 stable satellite signal minimum (seconds)
 contacted satellite count
how long has the position been unstable? unstable position sense duration >
 poor satellite contact minimum (seconds)

Card 6. GPS Position Sense Stability Measures and Conditions

stability satellite signal strength
GPS receiver position sense GPS user

poor satellite contact = (unstable sense duration > poor contact minimum)
poor satellite contact minimum = 60 seconds (feature specifications)
unstable position sense = (contacted satellite count < stable sense minimum)
stable position sense = (contacted satellite count >= stable sense minimum)
stable position sense minimum = 3 contacted satellites (feature specifications)
contacted satellite when: receiver has a stable satellite signal
stable satellite signal = (strong signal duration > stable signal minimum)
stable satellite signal minimum = 2 seconds (feature specifications)
strong satellite signal = (signal strength > strong signal minimum)
strong satellite signal minimum = 20 dB/mW (feature specifications)
satellite signal strength from: receiver satellite signal strength meter

Trace Cards

9 of 16

Face Cards

Face cards derive their name from their dominant focus on interfaces and interactions, the contracts
and conversations that take place between interaction participants. Face cards provide a way to capture
business activities and their stakeholders as use cases on index cards. A template for face cards can be
found in Appendix A (see Card Template 5).

Face cards can be used as a starting point for writing use cases, or subsequently for use case analysis.
Detailed discussions of use cases and their components can be found in Writing Effective Use Cases3

by Alistair Cockburn. Face cards intentionally simplify use cases by eliminating some of the details that
can be found in "fully dressed" use cases.

A face card captures at least the following information:

A primary goal describes the completion condition expected by the primary actor.
Each stakeholder interest describes a condition desired by the associated stakeholder.
A scenario trigger describes a condition that the trigger actor effects to initiate the use case.
Each scenario step describes an action of the associated step actor.

A face card may also capture preconditions and postconditions:

Each precondition describes a condition that must be ensured by the associated guarantor.
Each minimal guarantee describes a postcondition that will always be ensured for a recipient.
Each success guarantee describes a success condition that will be ensured for the recipient(s).

The format of a face card separates stakeholders (in the left column) from their interests, expectations,
obligations, and responsibilities (in the right column). Most situations are expressed using an active
verb phrase with present tense. Two exceptions include preconditions and some triggers. Preconditions
use an active verb with past tense. Some triggers may also use past tense.

As with use cases in general, face cards can be used to capture interactions for several goal levels.
When used in conjunction with other trace cards, they are especially appropriate for the following
three:

Goal Level Focus Potential Inclusions
business interface business customers + partners, interests, expectations,

contractual obligations, collaborative responsibilities
 exchanges of: value,
goods, information

human interface users + business stakeholders, interests, expectations,

obligations, collaborative responsibilities
 information exchanges

component interface collaborators + clients, quality expectations +

obligations, functional responsibilities
 information exchanges

When used at the later, more detailed requirements levels, face cards can serve as an intermediate
residue between use cases and design. They can help identify candidate object classes and
responsibilities at human and component interfaces. This knowledge can then be fed forward into
responsibility-driven object-oriented design, especially with CRC cards.

Trace Cards

10 of 16

The following two face cards were derived from the use case named "Get Paid for Car Accident" in
Writing Effective Use Cases3 (pg. 5). The first face card shows the stakeholders with their interests,
the postconditions, and the main success scenario, including the scenario initiation trigger.

Card 7. Accident Payment Main Success Scenario

claimant gets paid for a car accident claim
claimant wants to be paid the most possible
insurance company wants to pay the smallest appropriate amount
state insurance department wants to see that all guidelines are followed

insurance company (always) logs the claim and all activities
claimant + insurance co agree on the amount to be paid
claimant gets paid the agreed amount

claimant submits a claim with substantiating data
insurance company verifies that claimant owns a valid policy

" assigns an agent to examine the claim
" verifies that all details are within policy guidelines
" pays claimant
" closes file

The second face card shows the extension scenarios.

Card 8. Accident Payment Extension Scenarios

claimant gets paid for a car accident claim
claimant submitted an incomplete claim
insurance company requests missing information
claimant supplies missing information

claimant did not own a valid policy
insurance company denies claim, notifies claimant

" records all this, terminates proceedings

claimed accident violated basic policy guidelines
insurance company denies claim, notifies claimant

" records all this, terminates proceedings

claimed accident violated some minor policy guidelines
insurance company negotiates a settlement amount with the claimant

Trace Cards

11 of 16

Further Considerations

From a certain perspective, the prevailing state of software development practice has inverted
priorities. Typically, we rush (or are rushed) to implement solutions before we sufficiently
understanding the problems we're being asked to solve. Stakeholders tacitly assume that software
solutions will improve the quality of their lives and business activities. But, such benefits still elude our
collective grasp far too often. Without giving quality due consideration, without spending significant
time discussing quality expectations explicitly and systematically, the achievement of satisficing
solutions will continue to be accidental and haphazard rather than intentional and sure. The "rubber
meets the road" where requirements meet designs.

Historically, the practice of responsibility-driven design with CRC cards has focused primarily on
knowledge (noun phrases) and behavior (verb phrases) to the virtual exclusion of qualities (as
expressed by descriptive adjectives). The absence of quality responsibilities can usually be traced back
to the absence of quality considerations in the original requirements. Quality requirements often receive
little or no consideration during requirements gathering, especially in comparison with the emphasis
often placed on form and function.

But, the consideration of object responsibilities should properly include qualities in addition to
knowledge and behavior. Conceptually, we can understand qualities as expressive of the dimension
(and states) of being. So, objects have and ensure qualities in addition to having knowledge and doing
behaviors. Objects should know why in addition to what and how. Every object

knows some information (with structure) know what
does some behaviors (with functions) know how
ensures some qualities (with conditions) know why
is some concept (with a role and relations)

In practice, object-oriented designs entail strong contracts between servers and their clients. So, a
server object imposes responsibilities (especially for quality) on its clients as preconditions to the
proper usage of its services. Likewise, a server object offers quality guarantees to its clients (as
postconditions and invariants). Method preconditions (ensured by clients), method postconditions
(ensured by servers), invariants (ensured by servers), constraints, and qualified class names all offer the
potential for consideration with respect to quality requirements.

For example, reconsider Card 6 above. This example demonstrates how user stories can be analyzed
for their goals, and how apparently simple goals can entail quite elaborate quality and measurement
requirements when explored in detail. Notice that the definitions of named quality conditions often
relate values, e.g., from measurements, like the following:

stable position sense =
(contacted satellite count >= stable position sense minimum)

During requirements analysis (and during design), it's often useful to explore how quality themes and
conditions decompose into value relations and the measurements and metrics needed to test them.
Explicitly identifying and naming test conditions also improves the testability of object-oriented
designs. Intelligence cards can be used to capture and share the results of such analysis. Thus,
identifying and naming quality conditions and their component value relations can play an important
part in ensuring software solution quality.

Trace Cards

12 of 16

Perhaps this extended understanding of responsibilities can help improve our object-oriented designs,
especially in the context of CRC cards. Both client and server responsibilities can be listed on a CRC
card. Enumerating only the responsibilities for knowledge and behavior weakens a class design, while
also enumerating the respective responsibilities of both a server and its clients strengthens a design into
a contract, especially when quality responsibilities are included. This simple practice also increases the
testability of the design if the quality conditions are ultimately exposed as test methods in the
implementation. So, this practice can serve as a natural adjunct for test-driven development approaches
like extreme programming (XP).8

Table 2. Card and Traceability Summary

Card Type Knowledge Sources Traceability Intent

Policy Card quality
concerns,
benefits (value)

 governors: board + officers,
vision, mission, values

 tied to business policy statements:
vision, mission, values

Intelligence Cards concerns,

goals, metrics,
measurement
linkage

 requestors: activity managers,
other stakeholders,
objectives, goals

 ties business intelligence
requirements back to business
policies and priorities

Face Card goals, interests,

expectations,
obligations,
interactions

 expectors: activity
participants, users and other
stakeholders, business
contracts, user stories

 ties business activities and activity
improvement goals back to
business policies and priorities

CRC Card responsibilities

for: quality,
behavior,
knowledge

 developers: design sessions
and decisions

 ties solution designs back to
business activities and business
intelligence requirements

Trace Cards

13 of 16

References

Kent Beck, Ward Cunningham. A Laboratory for Teaching Object-Oriented Thinking. OOPSLA
1989 Conference Proceedings. ACM SIGPLAN Notices 24(10), 1989.

1.

Object Management Group. UML™ Resource Page. http://www.omg.org/uml/.2.

Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Publishing, Inc., 2000. ISBN
0-201-702258.

3.

Nik Boyd. Quality Alignment and Quality Inventories.
http://www.educery.com/papers/rhetoric/quality/alignment.htm.

4.

Victor Basili, Gianluigi Caldiera, Dieter Rombach. The Goal Question Metric Paradigm.
Encyclopedia of Software Engineering. John Wiley & Sons, Inc., 2001. ISBN 0-471-37737-6.

5.

Scott Whitmire. Object-Oriented Design Measurement. John Wiley & Sons, Inc., 1997. ISBN
0-471-13417-1.

6.

Ron Jeffries, Ann Anderson, Chet Hendrickson, Kent Beck. Extreme Programming Installed.
Addison-Wesley Publishing, Inc., 2001. ISBN 0-201-70842-6.

7.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Publishing,
Inc., 2000. ISBN 0-201-61641-6.

8.

Trace Cards

14 of 16

Appendix A. Trace Card Templates

Template 1. Theme-Oriented Policy Card

quality / value theme basic measure
quality instantiation benefit description

Template 2. Subject-Oriented Policy Card

concern subject type specific concern subject
quality instantiation benefit description

Trace Cards

15 of 16

Template 3. Intelligence Quality Card

quality concern essential metric
quality concern subject stakeholder role
stakeholder objective goal / target

questions metrics

Template 4. Intelligence Quantity Card

quality concern essential metric
concern subject stakeholder role

conditions / measurements sources / instruments

Trace Cards

16 of 16

Template 5. Face Card

primary actor / role primary goal
stakeholder interest(s)

minimal guarantee recipient minimal guarantee
success guarantee recipient success guarantee

precondition guarantor precondition
trigger actor scenario trigger
step actor scenario step (activity)

